中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Naunyn-Schmiedeberg's Archives of Pharmacology 2019-Sep

Isorhynchophylline enhances Nrf2 and inhibits MAPK pathway in cardiac hypertrophy.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Yongtao Zhang
Yuqian Cui
Shuai Dai
Wei Deng
Hao Wang
Weidong Qin
Hongna Yang
Han Liu
Jinfeng Yue
Dawei Wu

关键词

抽象

Isorhynchophylline (IRN) is one of the major tetracyclic oxindole alkaloids found in Uncaria rhynchophylla. Studies have found that IRN has diverse biological activities including antioxidant, anti-apoptosis, and neuroprotection. However, little is known about the effect of IRN on the development of cardiac hypertrophy. In this study, we investigated the change of the cell surface area and nascent protein synthesis of cultured H9c2 cardiomyocytes on exposure to phenylephrine (PE) plus IRN, and thus confirmed that IRN ameliorated cardiomyocyte hypertrophy induced by PE in vitro. Meanwhile, it turns out that IRN is also effective in neonatal rat ventricular myocytes (NRVMs) stimulated with angiotensin II (AngII). We also showed that IRN prevented cardiac dysfunction in mice with pressure overload due to transverse aortic constriction (TAC) and attenuated cardiac hypertrophy and fibrosis. IRN treatment improved the cardiac function assessed by echocardiographic parameters fractional shortening (FS) as well as suppressed the cardiac hypertrophy phenotypes, such as the increasing of ventricular mass/body weight and myocyte cross-sectional area. RT-PCR analysis showed that IRN treatment also alleviated the expression of fetal genes of ANP, BNP, Myh7, and the correlated fibrosis genes including TGF-β1, collagen I, collagen III, and CTGF in vivo. Meanwhile, IRN had anti-oxidative effects on cardiac remodeling with suppressed 4-HNE and MDA. Western blot analysis showed that the Nrf2 nuclear translocation and MAPK pathway were involved in the potential mechanisms of IRN on cardiac hypertrophy inhibition. The results of our study provide further evidence that IRN is a promising drug for the treatment of cardiac hypertrophy.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge