中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2006-Mar

LDL-antioxidant pterocarpans from roots of Glycine max (L.) Merr.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jin Hwan Lee
Byong Won Lee
Jin Hyo Kim
Tae-Sook Jeong
Min Jung Kim
Woo Song Lee
Ki Hun Park

关键词

抽象

The methanolic root extract of Glycine max (L.) Merr. was chromatographed, which yielded 10 flavonoids, including three isoflavones 1-3, five pterocarpans 4-8, one flavonol 9, and one anthocyanidin 10. All isolated compounds were examined for LDL-antioxidant activities using four different assay systems on the basis of Cu2+-mediated oxidation. Among them, seven compounds showed potent LDL-antioxidant activities in the thiobarbituric acid reactive substances (TBARS) assay, the lag time of conjugated diene formation, relative electrophoretic mobility (REM), and fragmentation of apoB-100 on copper-mediated LDL oxidation. Three pterocarpans 4, 6, and 7, never reported as LDL-antioxidant, showed potent activities with IC50 values of 19.8, 0.9, 45.0 microM, respectively, in comparison with probucol (IC50 = 5.6 microM) as positive control. Interestingly, coumestrol 6 (IC50 = 0.9 microM) showed 20 times more activity in the TBARS assay than genistein (IC50 = 30.1 microM) and daidzein (IC50 = 21.6 microM), representative antioxidants in soybean. Moreover, coumestrol 6 had an extended lag time of 190 min at 3.0 microM in measuring conjugated diene formation, while both genistein (120 min) and daidzein (93 min) lag times were extended to less than 120 min at the same concentration.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge