中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Okajimas Folia Anatomica Japonica 2014

Lectin-binding sites in epithelial cells of the mouse prostate gland.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Kentaro Sakuda
Ayaka Yoshida
Ryoki Muragishi
Kazuya Yoshinaga

关键词

抽象

The prostate is an exocrine gland in the male reproductive tract that secretes seminal fluids. To gain insight into the cytochemical properties of prostatic epithelial cells, the characteristics of glycoconjugates in mouse prostate sections were examined by lectin histochemistry and immunohistochemistry. Characteristic staining patterns were observed, depending on the type of lectins present in the epithelia. Luminal cells reacted specifically with mannose-binding lectins (Galanthus nivalis lectin, Hippeastrum hybrid lectin, Narcissus pseudonarcissus lectin) and Maclura pomifera lectin in all lobes of the prostate. Luminal cells also expressed galactose, N-acetyl-D-galactosamine (GalNAc), N-acetyl-D-glucosamine (GlcNAc), and fucose residues in the lateral and ventral lobes. Basal cells expressed GlcNAc and fucose, and reacted with Datura stramonium lectin and Aleuria aurantia lectin in all lobes. These results indicate that in the mouse prostate, the selectivity of lectin-binding sites for distinct cell types and lobe-dependent staining may relate to cellular and regional differences in function. Furthermore, some lectins selectively bound to prostatic epithelial cells, indicating their potential use as markers for the histopathological evaluation of prostatic diseases, cancer diagnosis, or male infertility.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge