中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pediatric Research 2005-Jun

Long-chain fatty acid oxidation during early human development.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Nadia A Oey
Margarethe E J den Boer
Frits A Wijburg
Michel Vekemans
Joëlle Augé
Céline Steiner
Ronald J A Wanders
Hans R Waterham
Jos P N Ruiter
Tania Attié-Bitach

关键词

抽象

Patients with very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD)/mitochondrial trifunctional protein (MTP) deficiency, disorders of the mitochondrial long-chain fatty acid oxidation, can present with hypoketotic hypoglycemia, rhabdomyolysis, and cardiomyopathy. In addition, patients with LCHAD/MTP deficiency may suffer from retinopathy and peripheral neuropathy. Until recently, there was no indication of intrauterine morbidity in these disorders. This observation was in line with the widely accepted view that fatty acid oxidation (FAO) does not play a significant role during fetal life. However, the high incidence of the gestational complications acute fatty liver of pregnancy and hemolysis, elevated liver enzymes, and low platelets syndrome observed in mothers carrying a LCHAD/MTP-deficient child and the recent reports of fetal hydrops due to cardiomyopathy in MTP deficiency, as well as the high incidence of intrauterine growth retardation in children with LCHAD/MTP deficiency, suggest that FAO may play an important role during fetal development. In this study, using in situ hybridization of the VLCAD and the LCHAD mRNA, we report on the expression of genes involved in the mitochondrial oxidation of long-chain fatty acids during early human development. Furthermore, we measured the enzymatic activity of the VLCAD, LCHAD, and carnitine palmitoyl-CoA transferase 2 (CPT2) enzymes in different human fetal tissues. Human embryos (at d 35 and 49 of development) and separate tissues (5-20 wk of development) were used. The results show a strong expression of VLCAD and LCHAD mRNA and a high enzymatic activity of VLCAD, LCHAD, and CPT2 in a number of tissues, such as liver and heart. In addition, high expression of LCHAD mRNA was observed in the neural retina and CNS. The observed pattern of expression during early human development is well in line with the spectrum of clinical signs and symptoms reported in patients with VLCAD or LCHAD/MTP deficiency.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge