中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1978-Aug

Malate and Dihydroxyacetone Phosphate-dependent Nitrate Reduction in Spinach Leaf Protoplasts.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
C K Rathnam

关键词

抽象

Isolated spinach (Spinacia oleracea L. var. Bloomsdale) leaf protoplasts reduced nitrate at rates of 9 micromoles per milligram chlorophyll per hour in light with a 3- to 4-fold stimulation in the presence of HCO(3) (-). A similar stimulation of nitrate reduction in the absence of CO(2) fixation was obtained by the addition of malate, oxaloacetate (OAA), phospho-3-glyceric acid (PGA), or dihydroxyacetone phosphate (DHAP). Stimulation by malate and DHAP was light-independent, while the PGA and OAA effect was light-dependent. Nitrate reduction was found to be coupled to the cytoplasmic oxidation of DHAP or malate. The PGA/DHAP and OAA/malate shuttle across the chloroplast envelope has been demonstrated to support CO(2) fixation and/or nitrate reduction. The leaf protoplasts readily assimilated nitrate into amino-N in a stoichiometric relationship.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge