中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacy and Pharmacology 2006-Feb

Mechanism underlying mitochondrial protection of asiatic acid against hepatotoxicity in mice.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jing Gao
Jin Chen
Xinhui Tang
Liya Pan
Feng Fang
Lizhi Xu
Xiaoning Zhao
Qiang Xu

关键词

抽象

Asiatic acid (AA) is one of the triterpenoid components of Terminalia catappa L., which has antioxidative, anti-inflammatory and hepatoprotective activity. This research focused on the mitochondrial protection of AA against acute liver injury induced by lipopolysaccharide (LPS) and D-galactosamine (D-GalN) in mice. It was found that pretreatment with 25, 50 or 100 mg kg(-1) AA significantly blocked the LPS + D-GalN-induced increase in both serum aspartate aminotransferase (sAST) and serum alanine aminotransferase (sALT) levels, which was confirmed by ultrastructural observation under an electron microscope, showing improved nuclear condensation, ameliorated mitochondrion proliferation and less lipid deposition. Meanwhile, different doses of AA could decrease both the transcription and the translation level of voltage-dependent anion channels (VDACs), the most important mitochondrial PTP component protein, and block the translocation of cytochrome c from mitochondria to cytosol. On the other hand, pre-incubation with 25, 50 and 100 microg mL(-1) AA inhibited the Ca(2+)-induced mitochondrial permeability transition (MPT), including mitochondrial swelling, membrane potential dissipation and releasing of matrix Ca(2+) in liver mitochondria separated from normal mice, indicating the direct role of AA on mitochondria. Collectively, the above data suggest that AA could protect liver from damage and the mechanism might be related to up-regulating mitochondrial VDACs and inhibiting the process of MPT.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge