中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ACS Chemical Biology 2016-Sep

Mechanistic Insight into the Biosynthesis and Detoxification of Fumonisin Mycotoxins.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Kevin M N Burgess
Justin B Renaud
Tim McDowell
Mark W Sumarah

关键词

抽象

Fumonisins, notably FB1, FB2, FB3, and FB4, are economically important mycotoxins produced by a number Fusarium sp. that occur on corn, rice, and sorghum as well as by Aspergillus sp. on grapes. The fumonisin scaffold is comprised of a C18 polyketide backbone functionalized with two tricarballylic esters and an alanine derived amine. These functional groups contribute to fumonisin's ability to inhibit sphingolipid biosynthesis in animals, plants, and yeasts. We report for the first time the isolation and structure elucidation of two classes of nonaminated fumonisins (FPy and FLa) produced by Aspergillus welwitschiae. Using a Lemna minor (duckweed) bioassay, these new compounds were significantly less toxic in comparison to the fumonisin B mycotoxins, providing new insight into the mechanism of fumonisin toxicity. Time course fermentations monitoring the production of FB4, FPy4, and FLa4, as well as (13)C and (15)N stable isotope incorporation, suggest a novel postbiosynthetic oxidative deamination process for fumonisins. This pathway was further supported by a feeding study with FB1, a fumonisin not produced by Aspergillus sp., which resulted in its transformation to FPy1. This study demonstrates that Aspergillus have the ability to produce enzymes that could be used for fumonisin detoxification.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge