中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Cancer Research 2016-Jul

Mitochondrial Reprogramming Regulates Breast Cancer Progression.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Anbarasu Kannan
Robert B Wells
Subramaniam Sivakumar
Satoshi Komatsu
Karan P Singh
Buka Samten
Julie V Philley
Edward R Sauter
Mitsuo Ikebe
Steven Idell

关键词

抽象

The goal of this study was to understand the role of altered mitochondrial function in breast cancer progression and determine the potential of the molecular alteration signature in developing exosome-based biomarkers.

This study was designed to characterize the critical components regulating mitochondrial function in breast tumorigenesis. Experiments were conducted to assess the potential of these molecules for exosome-based biomarker development.

We observed a remarkable reduction in spontaneous metastases through the interplay in mitochondria by SH3GL2, vesicular endocytosis-associated protein and MFN2, an important regulator of mitochondrial fusion. Following its overexpression in breast cancer cells, SH3GL2 translocated to mitochondria and induced the production of superoxide and release of cytochrome C from mitochondria to the cytoplasm. These molecular changes were accompanied by decreased lung and liver metastases and primary tumor growth. SH3GL2 depletion reversed the above phenotypic and associated molecular changes in nontumorigenic and tumorigenic breast epithelial cells. Loss of SH3GL2 and MFN2 expression was evident in primary human breast cancer tissues and their positive lymph nodes, which was associated with disease progression. SH3GL2 and MFN2 expression was detected in sera exosomes of normal healthy women, but barely detectable in the majority of the women with breast cancer exhibiting SH3GL2 and MFN2 loss in their primary tumors.

This study identified a new mitochondria reprogramming pathway influencing breast cancer progression through SH3GL2 and MFN2. These proteins were frequently lost in breast cancer, which was traceable in the circulating exosomes. Clin Cancer Res; 22(13); 3348-60. ©2016 AACR.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge