中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1987-Apr

Mitochondrial transmembrane potential and pH gradient during anoxia.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
B S Andersson
T Y Aw
D P Jones

关键词

抽象

The effect of anoxia on the mitochondrial transmembrane potential and pH gradient was studied in a preparation of isolated hepatocytes. Transmembrane potential (delta psi) was calculated from the distribution of triphenylmethylphosphonium between the mitochondrial, cytosolic, and extracellular compartments, which were separated by digitonin fractionation and centrifugation. Mitochondrial and cytosolic pH values were calculated from the distribution of the weak acid, dimethadione, which was determined similarly. After 30 min anoxia, the magnitude of mitochondrial delta psi was decreased from -163 to -133 mV and the delta pH (mitochondria vs. cytoplasm) was essentially unchanged (aerobic, 0.78 +/- 0.08; anaerobic, 0.76 +/- 0.11). Thus the protonmotive force (delta p = delta psi-Z delta pH), is largely retained even in the absence of electron flow and ATP synthesis. Inhibitors of the ATP synthase (oligomycin), mitochondrial adenine nucleotide carrier (atractyloside), and glycolytic pathway (2-deoxy-D-glucose) do not affect the ability of the cell to maintain delta psi during anoxia. Therefore, the results indicate that retention of the protonmotive force is not due to utilization of ATP produced by glycolysis and suggest that mechanisms exist to preserve ion distribution during anoxia.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge