中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Surgical Research 2019-Apr

Molecular Mechanisms and Potential Therapeutic Targets in Incisional Hernia.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Finosh Thankam
Gunasekar Palanikumar
Robert Fitzgibbons
Devendra Agrawal

关键词

抽象

The pathophysiology underlying the formation, progression, and surgical healing of incisional hernia (IH) that develops as a major complication associated with abdominal laparotomy is poorly understood. The proposed mechanisms include the switch of collagen phenotype and the proliferation of abnormal fibroblasts after surgery. The focus of this article was to critically review the cellular, biochemical, and potential molecular events associated with the development of IH. The disturbance in collagen homeostasis with alterations in the expression of collagen subtypes, including type 1, type 3, type 4, and type 5, and impairment in the transdifferentiation of fibroblasts to myofibroblasts are discussed. The phenotype switch of wound-repair fibroblasts results in mechanically compromised extracellular matrix that triggers the proliferation of abnormal fibroblasts. High-mobility group box 1 could be involved in wound progression, whereas signaling events mediated by tumor necrosis factor β1, connective tissue growth factor, lysyl oxidase, and hypoxia-inducible factor 1 play significant role in the wound healing response. Thus, the ratio of tumor necrosis factorβ1: high-mobility group box 1 could be a critical determinant of the underlying pathology. Potential target sites for therapeutic intervention in the management of IH are recognized.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge