中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Microbiology and Biotechnology 2010-Jul

Molecular detection and diversity of xylanase genes in alpine tundra soil.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Guozeng Wang
Yaru Wang
Peilong Yang
Huiying Luo
Huoqing Huang
Pengjun Shi
Kun Meng
Bin Yao

关键词

抽象

Xylan is a major polysaccharide in plant cell walls, and its degradation is mainly conducted by microbial xylanases in nature. To explore the xylanase diversity in the environment, two sets of degenerate primers were designed based on the microbial xylanase sequences in Pfam database of glycosyl hydrolase (GH) family 10 and 11 and were used to amplify objective gene fragments directly from the alpine tundra soil DNA of the Tianshan Mountains, China. Ninety-six distinct GH 10 and 31 GH 11 xylanase gene fragments were retrieved, and most of them have low identities with known sequences in GenBank. Based on phylogenetic analysis, all of the GH 10 xylanase sequences fell into six clusters and were related to xylanases from Actinobacteria, Proteobacteria, Verrucomicrobia, Bacteroidetes, Firmicutes, and Acidobacteria. Three clusters of GH 11 xylanase sequences were established, and two of them were related with enzymes from fungi. These results indicated the diversity of xylanase genes in this cold environment. Four xylanolytic strains were isolated from the soil, and GH 10 xylanase gene fragments were cloned using the same primers. A full-length gene was obtained and expressed in Escherichia coli, and the recombinant enzyme showed some cold-related characteristics. Our study provides an efficient molecular approach to study xylanase in complex environments and casts an insight into the diversity and distribution of xylanases in a cold environment, which is very meaningful to understand their roles in xylan degradation in nature.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge