中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neuroscience 2008-Oct

Netrin-1 attenuates ischemic stroke-induced apoptosis.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
T-W Wu
W-W Li
H Li

关键词

抽象

In the present study we tested the protective effects of netrin-1 in stroke and investigated the potential underlying mechanisms. When we performed middle cerebral artery occlusion (MCAO) on adult mice, up-regulation of the receptor uncoordinated gene 5H2 (UNC5H2) but not its ligand netrin-1 was detected with RT-PCR and immunohistochemistry. Injection of netrin-1, 1 day after MCAO, significantly reduced infarct volume at 3 days after MCAO as revealed by functional magnetic resonance imaging. The ischemic cortex was preserved when netrin-1 was continuously administered. Fluoro-Jade and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling staining showed that netrin-1 reduced the number of dying neurons and apoptotic cells after MCAO. Ischemia-induced p53 expression was attenuated by netrin-1. We also tested the ability of netrin-1 to attract intrinsic neuronal stem cells to the infarct area. Both DCC and UNC5H2 were expressed in neurosphere culture and netrin-1 attracted stem cells in an in vitro transwell assay. However, in vivo netrin-1 administration did not enhance the MCAO-induced stem cell migration toward the infarct area. Our study shows that UNC5H2 expression was elevated after MCAO and administration of netrin-1 protected infarct tissue from p53-mediated apoptosis. These data indicate that the p53/dependent receptor pathway is involved in ischemic stroke pathology and suggest possible new stroke therapies.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge