中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Medicinal Chemistry 2016

Neurotrophins' Modulation by Olive Polyphenols.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Valentina Carito
Mauro Ceccanti
Luigi Tarani
Giampiero Ferraguti
George N Chaldakov
Marco Fiore

关键词

抽象

BACKGROUND

Polyphenols are probably the most known and investigated molecules of nutritional interest as micronutrients present in abundance in our diet. Some of the most important food sources of polyphenols in the Mediterranean diet are olives and olive oil. A growing body of evidence from animal models to clinical studies indicates that polyphenol compounds may have neuroprotective effects in several pathologies of the nervous system through the control of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction.

OBJECTIVE

Based on the most recent scientific literature, dietary intake of polyphenols attenuates oxidative stress and reduces risk for related neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis and Huntington's disease. Also at the peripheral level, they act as antioxidant, defending tissues against oxidative damage and scavenging free radicals.

RESULTS

Recent findings in animal models and humans show that polyphenols may have a role in regulating neurotrophins levels, in particular nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), suggesting that polyphenols may also induce their protective effects through the potentiation of neurotrophins action. NGF and BDNF, primarily known as biological mediators stimulating neuron growth, proliferation, survival and differentiation are recently studied also as metabotrophic factors, acting on glucose and energy metabolism, pancreatic beta cells and cardiovascular homeostasis.

CONCLUSIONS

In this context, a better understanding of the effects of polyphenols on neurotrophins and their receptors (TrkA, TrkB, p75NTR) could certainly generate interest for drug discovery and also for the potential dietary prevention of several neurological and cardiometabolic diseases.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge