中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Neurochirurgica, Supplement 2011

Nitric oxide synthase inhibitors and cerebral vasospasm.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
C S Jung

关键词

抽象

L-arginine is a source of nitric oxide (NO) that is cleaved from the terminal guanidino nitrogen atom by nitric oxide synthase (NOS). NO evokes, because of its free radical properties and affinity to heme, ferrous iron and cysteine, a wide spectrum of physiological and pathophysiological effects. For many years, different exogenous NOS inhibitors were used to elucidate the role of NOS and NO in health and disease. Later, endogenous NOS inhibitors, as asymmetric dimethylarginine (ADMA) were discovered. Endogenous inhibitors as ADMA are produced by post-translational methylation of L-arginine which is catalyzed by a family of protein N-methyltransferases (PRMT), using S-adenosylmethionine as a methyl group donor. ADMA is eliminated by dimethylarginine dimethylaminohydrolases (DDAH I or II). ADMA hydrolysis increases NOS activity and NO production. Furthermore, L-citrulline, a by-product of ADMA hydrolysis as well as of NO production by NOS, can in turn inhibit DDAH. Therefore, endogenous inhibition of NOS can be modified via different ways (1) changing the availability of L-arginine and/or of L-citrulline; (2) stimulating or inhibiting DDAH activity; (3) modifying methylation via regulating availability of adenosylmethionine; or (4) modifying PRMT activity. Research elucidating the role of NOS inhibitors in respect of delayed cerebral vasospasm after subarachnoid hemorrhage is summarized.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge