中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Psychoneuroendocrinology 2018-Nov

Obesity influences white matter integrity in schizophrenia.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Marco Spangaro
Elena Mazza
Sara Poletti
Roberto Cavallaro
Francesco Benedetti

关键词

抽象

BACKGROUND

White matter (WM) alterations have been consistently described in patients with schizophrenia and correlated with the severity of psychotic symptoms and cognitive impairment. Obesity has been reported in over 40% of patients with schizophrenia and has been associated with cognitive deficits, cardiovascular diseases, metabolic alterations, and overall mortality. Moreover, studies among healthy subjects and subjects at risk for psychosis reported an influence of Body Mass Index (BMI) on structural connectivity. We therefore hypothesized that obesity and overweight could further disrupt WM integrity of patients affected by schizophrenia.

METHODS

Eighty-eight schizophrenia patients were evaluated for BMI. We divided the sample in overweight/obese and normal weight groups. We then performed whole brain tract-based spatial statistics in the WM skeleton with threshold-free cluster enhancement of DTI measures of WM microstructure: axial (AD), radial (RD), and mean diffusivity (MD), and fractional anisotropy (FA).

RESULTS

A significant difference between the two groups was observed: normal weight patients showed higher AD and a higher FA trend compared to obese patients in several fibers' tracts including longitudinal fasciculus, uncinate fasciculus, corona radiata, thalamic radiation, fronto-occipital fasciculus, cingulum and corpus callosum.

CONCLUSIONS

Elevated BMI might contribute to WM disruption of schizophrenia by hampering structural connectivity in critical cortico-limbic networks, known to play a crucial role in neurocognitive functioning, emotional processing and psychopathology whose dysfunction are prominent features of the disorder.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge