中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Carbohydrate Research 2005-Sep

Overall carbohydrate-binding properties of Castanea crenata agglutinin (CCA).

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Keiichi Nomura
Nobuyuki Takahashi
Masaaki Hirose
Sachiko Nakamura
Fumio Yagi

关键词

抽象

The carbohydrate-binding properties of Castanea crenata agglutinin (CCA) were investigated by an enzyme-linked lectin absorbent assay. The binding ability of each carbohydrate was compared using IC(50) values. CCA exhibited mannose/glucose specificity, as observed with many mannose-binding jacalin-related lectins. For oligosaccharides containing glucose, it has been shown that the degree of polymerization and the linkage mode of glucose residues have no effect on CCA-carbohydrate interaction; thus, only the non-reducing end glucose unit in glucooligosaccharides may be involved in the interaction with CCA. Among mannooligosaccharides, CCA strongly recognized alpha-(1-->3)-D-Man-[alpha-D-Man-(1-->6)]-D-Man, which is a core in N-linked carbohydrate chains. By considering the results with glycoproteins, it is likely that CCA binds preferentially to mono- or non-sialylated biantennary carbohydrate chains. We also obtained K(d) values by analysis of the dependency of the IC(50) on CCA concentration, based on the hypothesis that CCA has a single binding site or two equivalent binding sites. The estimated K(d) values for mannose, glucose and alpha-(1-->3)-D-Man-[alpha-D-Man-(1-->6)]-D-Man were 2.39, 7.19 and 0.483 mM, respectively. The relative binding abilities showed good agreement with the relative inhibition intensities. Isothermal calorimetric titration was carried out to directly estimate the dissociation constants of CCA for mannose and for alpha-D-Man-(1-->3)-D-Man. The values were 2.34 mM for mannose and 0.507 mM alpha-D-Man-(1-->3)-D-Man. These results suggest that the relative inhibition intensity represents the ratio of K(d) values and that CCA has a single or two equivalent binding sites.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge