中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytotherapy Research 2004-Aug

Oxygen activation by photoexcited protoberberinium alkaloids from Mahonia aquifolium.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Vlasta Brezová
Dana Dvoranová
Daniela Kost'álová

关键词

抽象

Protoberberinium salts, i.e. berberine (I), palmatine (II) and jatrorrhizine (III) prepared from Mahonia aquifolium (Pursh) Nutt. belong to isoquinoline alkaloids possessing interesting biological activity (e.g. antibacterial, antimalarial, antitumor). The characteristic UV/Vis absorption band maxima of I-III iodide salts were found in regions 350 and 425 nm in dimethylsulfoxide (DMSO) and ethanol solvents, and were only negligibly influenced by substitution changes on the C-2 and C-3 positions. The fluorescence intensity of protoberberinium salts monitored in ethanol solutions was significantly lowered by iodide counter-ions, and decreased in the order berberine > palmatine > jatrorrhizine. EPR spectroscopy supplied evidence of the formation of super-oxide anion radicals and singlet oxygen upon irradiation of berberine in oxygenated DMSO solvent. The photochemical generation of O(2) (.-) and (1)O(2) in DMSO solutions of palmatine and jatrorrhizine was substantially lower, and probably reflected the replacement of a photolabile methylenedioxy group at C-2 and C-3 positions in the berberine molecule by two methoxy groups in palmatine, and methoxyl (C-2) and hydroxyl (C-3) substitution in jatrorrhizine. Additionally, the powder EPR spectra of protoberberinium iodides I-III measured at 290 K revealed the presence of single-line EPR signals (g(eff) = 2.0044), which were attributed to hydroperoxidic structures produced by the autoxidation process. The photochemical reactions of protoberbenium salts producing reactive oxygen species after UVA excitation should be integrated in biological activity investigations, as well as in their applications in skin disorder treatment.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge