中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American Chemical Society 2015-Feb

Perpetually self-propelling chiral single crystals.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Manas K Panda
Tomče Runčevski
Ahmad Husain
Robert E Dinnebier
Panče Naumov

关键词

抽象

When heated, single crystals of enantiomerically pure D- and L-pyroglutamic acid (PGA) are capable of recurring self-actuation due to rapid release of latent strain during a structural phase transition, while the racemate is mechanically inactive. Contrary to other thermosalient materials, where the effect is accompanied by crystal explosion due to ejection of debris or splintering, the chiral PGA crystals respond to internal strain with unprecedented robustness and can be actuated repeatedly without deterioration. It is demonstrated that this superelasticity is attained due to the low-dimensional hydrogen-bonding network which effectively accrues internal strain to elicit propulsion solely by elastic deformation without disintegration. One of the two polymorphs (β) associated with the thermosalient phase transition undergoes biaxial negative thermal expansion (αa = -54.8(8) × 10(-6) K(-1), αc = -3.62(8) × 10(-6) K(-1)) and exceptionally large uniaxial thermal expansion (αb = 303(1) × 10(-6) K(-1)). This second example of a thermosalient solid with anomalous expansion indicates that the thermosalient effect can be expected for first-order phase transitions in soft crystals devoid of an extended 3D hydrogen-bonding network that undergo strongly anisotropic thermal expansion around the phase transition.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge