中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Microbiology 2006-Dec

Phylogenetic diversity of acidophilic sporoactinobacteria isolated from various soils.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Sung-Heun Cho
Ji-Hye Han
Chi Nam Seong
Seung Bum Kim

关键词

抽象

Spore forming actinobacteria (sporoactinobacteria) isolated from soils with an acidic pH in Pinus thunbergii forests and coal mine waste were subjected to taxonomic characterization. For the isolation of acidophilic actinobacteria, acidified starch casein agar (pH adjusted to 4-5) was used. The numbers of actinobacteria growing in acidic media were between 3.2 x 10(4) and 8.0 x 10(6) CFU/g soil. Forty three acidophilic actinobacterial strains were isolated and their 16S rDNA sequences were determined. The isolates were divided into eight distinctive phylogenetic clusters within the variation encompassed by the family Streptomycetaceae. Four clusters among them were assigned to the genus Streptacidiphilus, whereas the remaining four were assigned to Streptomyces. The clusters belonging to either Streptomyces or Streptacidiphilus did not form monophyletic clade. The growth pH profiles indicated that the representative isolates grew best between pH 5 and 6. It is evident from this study that acidity has played a critical role in the differentiation of the family Streptomycetaceae, and also that different mechanisms might have resulted in the evolution of two groups, Streptacidiphilus (strict acidophiles) and neutrotolerant acidophilic Streptomyces. The effect of geographic separation was clearly seen among the Streptacidiphilus isolates, which may be a key factor in speciation of the genus.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge