中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Chinese Medicine 2017

Phytochemistry and Pharmacological Activities of the Genus Swertia (Gentianaceae): A Review.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jie Li
Yan-Li Zhao
Heng-Yu Huang
Yuan-Zhong Wang

关键词

抽象

Swertia plants have been considered to be medicinal plants useful for the treatment of various ailments for thousands of years, especially in Asian countries. This is due to the broad variety of chemical compounds that provide multiple ligands for bonding to different endogenous biomacromolecules for patients. Chemical constituents and pharmacological activities of Swertia plants are summarized in this paper. Approximately 419 metabolites and 40 bioactive compounds have been reported from 30 Swertia species, including xanthones, flavonoids, seco-iridiods, iridiods, triterpenoids, alkaloids, volatiles, and other secondary metabolites. The bioactivities of Swertia plants include anticarcinogenic, hepatoprotective, anti-oxidant, hypoglycemic, anthelmintic, antibacterial, antifungal, anti-diabetic, gut, and airways modulatory, metabolizing isozymes inhibitory, neuroprotective, HIV-I reverse transcriptases inhibitory, anticholinergic, and CNS-depressant activities, etc. In addition, biosynthetic pathways of xanthones, and seco-iridiods, two most important secondary metabolites for Swertia, are elucidated. The xanthones biosynthetic pathway is a mixed biosynthetic pathway involved the shikimate and the malonate routes, and the seco-iridoid pathway starts with geraniol derived from IPP which is produced either via the MEP or the MVA pathway. This review will offer a reference for future researches on the protection of natural resources, the investigation of therapeutic basis, new drug development, and so forth. Metabolic pathways of some crucial active compounds were also discussed in this review.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge