中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecules 2018-Nov

Phytotoxic Compounds Isolated from Leaves of the Invasive Weed Xanthium spinosum.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Zhuogeng Yuan
Xiangwei Zheng
Yu Zhao
Ying Liu
Shixing Zhou
Caixia Wei
Yunxia Hu
Hua Shao

关键词

抽象

The aim of this study was to identify bioactive compounds from leaves of the invasive plant Xanthium spinosum and assess their phytotoxic activity. Activity-guided fractionation led to the isolation of 6 bioactive compounds: xanthatin (1), 1α,5α-epoxyxanthatin (2), 4-epiisoxanthanol (3), 4-epixanthanol (4), loliolide (5) and dehydrovomifoliol (6). Of them, compounds 2⁻6 were isolated from the X. spinosum for the first time. The structures of 1⁻6 were elucidated on the basis of extensive NMR studies and ESI-MS measurements as well as comparison with literature data. All of compounds were evaluated for their phytotoxic activity. Among them, compounds 1⁻4 exhibited stronger activity on 2 receiver plants compared with the other 2 compounds, with xanthatin (1) being the most potent compound, which suppressed root growth of the dicot plant Amaranthus retroflexus by 32.5%, 39.4%, 84.7% when treated xanthatin (1) at 5, 20, and 100 µg/mL, while for the monocot plant, root growth was inhibited by 14.7%, 28.0%, and 40.0%, respectively. Seedling growth was nearly completely inhibited when the concentration of xanthanolides increased to 500 µg/mL, whereas there was still some seedling growth when loliolide (5) and dehydrovomifoliol (6) were applied at the same concentration. Dehydrovomifoliol (6) did not negatively affect seedling growth of P. annua at all tested concentrations, and root length was still 42.0% of the control when the highest concentration 500 µg/mL was used. This is the first report of the phytotoxicity of 1α,5α-epoxyxanthatin (2), 4-epiisxanthanol (3) and 4-epixanthanol (4). These compounds have the potential to be utilized as natural herbicides, especially 4-epiisoxanthanol (3), which exhibited significant selective activity between the dicot and monocot plants. On the other hand, whether these bioactive substances serve as allelochemicals to facilitate the invasion success of X. spinosum needs to be further studied.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge