中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxins 2014-Oct

Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Rosi Bissinger
Abaid Malik
Jamshed Warsi
Kashif Jilani
Florian Lang

关键词

抽象

BACKGROUND

Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca²⁺-activity ([Ca²⁺]i), formation of ceramide, oxidative stress and activation of p38 kinase.

METHODS

Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca²⁺]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry.

RESULTS

A 48 h exposure to piperlongumine (30 µM) was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca²⁺]i and the effect was not dependent on presence of extracellular Ca²⁺. Piperlongumine significantly increased ROS formation and ceramide abundance.

CONCLUSIONS

Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca²⁺ but at least partially due to ROS and ceramide formation.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge