中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Biology 2011-Sep

Plant Y chromosome degeneration is retarded by haploid purifying selection.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Margarita V Chibalina
Dmitry A Filatov

关键词

抽象

Sex chromosomes evolved many times independently in many different organisms [1]. According to the currently accepted model, X and Y chromosomes evolve from a pair of autosomes via a series of inversions leading to stepwise expansion of a nonrecombining region on the Y chromosome (NRY) and the consequential degeneration of genes trapped in the NRY [2]. Our results suggest that plants represent an exception to this rule as a result of their unique life-cycle that includes alteration of diploid and haploid generations and widespread haploid expression of genes in plant gametophytes [3]. Using a new high-throughput approach, we identified over 400 new genes expressed from X and Y chromosomes in Silene latifolia, a plant that evolved sex chromosomes about 10 million years ago. Y-linked genes show faster accumulation of amino-acid replacements and loss of expression, compared to X-linked genes. These degenerative processes are significantly less pronounced in more constrained genes and genes that are likely exposed to haploid-phase selection. This may explain why plants retain hundreds of expressed Y-linked genes despite millions of years of Y chromosome degeneration, whereas animal Y chromosomes are almost completely degenerate.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge