中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of NeuroImmune Pharmacology 2015-Mar

Potential neuroprotective activity of Ginseng in Parkinson's disease: a review.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Elena González-Burgos
Carlos Fernandez-Moriano
M Pilar Gómez-Serranillos

关键词

抽象

Parkinson's disease is a chronic, multifactorial and progressive neurologic condition that affects around six million people worldwide, normally over 60 years of age, and is characterized by neurodegeneration of dopaminergic neurons in the substantia nigra. The species of the genus Panax, popularly named as "Ginseng", are widely used as herbal remedies for their multiple beneficial effects, including their neurotherapeutic efficacies as protectors against major neurodegenerative diseases. The current review aims to report major findings and current knowledge on Ginseng and its major constituents as potential neuroprotective agents against Parkinson's disease, focusing on its mechanisms of action and molecular targets. For that purpose, it includes all research works published in MEDLINE/PubMed within the last decade by utilizing the following combination of the keywords: "Ginseng, ginsenosides, neuroprotection and Parkinson's disease". As reported, most of the studies have been carried out on isolated compounds rather than extracts. The major ginsenosides investigated as neuroprotector agents for Parkinson's disease are Rb1, Rg1, Rd and Re. Other minor components such as Notoginsenoside R2 and Pseudoginsenoside-F11 have also attracted remarkable interest as promising antiparkinson agents. These compounds exert their neuroprotective activity through different mechanisms including, among others, inhibition of oxidative stress and neuroinflammation, decrease in toxins-induced apoptosis and nigral iron levels, and regulation of N-methyl-D-aspartate receptor channel activity.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge