中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Inherited Metabolic Disease 2002-May

Primary and secondary defects of the mitochondrial respiratory chain.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
A H V Schapira

关键词

抽象

Over 100 mutations of mitochondrial DNA (mtDNA) have been associated with human disease. The phenotypic manifestation of mtDNA mutations is extremely broad, from oligosymptomatic patients with isolated deafness, diabetes, ophthalmoplegia, etc., to complex encephalomyopathic disorders that may include dementia, seizures, ataxia, stroke-like episodes, etc. The genotype variants are also wide, with rearrangements (deletions, duplications) and point mutations affecting protein coding genes, tRNAs and rRNAs. There are some broad genotype/phenotype correlations but also substantial overlap. The pathogenetic mechanisms involved in the expression of mtDNA mutations are still not yet fully understood. More recently, mutations of nuclear genes encoding subunits of the respiratory chain, particularly those of complex I, have been identified. These predominantly, but not exclusively, involve infant onset disease with early death. Recently it has become clear that the function of the respiratory chain may be impaired by mutations affecting other mitochondrial proteins or as a secondary phenomenon to other intracellular biochemical derangements. Examples include Friedreich ataxia where a mutation of a nuclear encoded protein (frataxin), probably involved in iron homeostasis in mitochondria, results in severe deficiency of the respiratory chain in a pattern indicative of free radical mediated damage. Mutations of nuclear encoded proteins involved in cytochrome oxidase assembly and maintenance have been characterised and, as predicted, are associated with severe deficiency of cytochrome oxidase and, most frequently, Leigh syndrome. Defects of intracellular metabolism, with particularly excess-free radical generation including nitric oxide or peroxynitrite, may cause secondary damage to the respiratory chain. This is probably of relevance in Huntington disease, motor neuron disease (amyotrophic lateral sclerosis) and Wilson disease. These disorders seem to have defective oxidative phosphorylation as a common pathway in their pathogenesis and it may be that treatments designed to improve respiratory chain function may ameliorate the progression of these disorders.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge