中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biophysical Journal 2005-Apr

Proapoptotic triterpene electrophiles (avicins) form channels in membranes: cholesterol dependence.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Xiao Xian Li
Bridgette Davis
Valsala Haridas
Jordan U Gutterman
Marco Colombini

关键词

抽象

Avicins, a family of triterpenoid saponins from Acacia victoriae, can regulate the innate stress response in human cells. Their ability to induce apoptosis in transformed cells makes them potential anticancer agents. We report that avicins can form channels in membranes. The conductance reached a steady state after each addition, indicating a dynamic equilibrium between avicin in solution and in the membrane. The high power dependence (up to 10) of the membrane conductance on the avicin concentration indicates the formation of multimeric channels, consistent with the estimated pore radius of 1.1 nm. This radius is too small to allow protein flux across the mitochondrial outer membrane, a process known to initiate apoptosis. Channel formation is lost when avicin's amphipathic side chain is removed, implicating this as the channel-forming region. A small difference in this side chain results in strong cholesterol dependence of channel formation in avicin G that is not found in avicin D. In neutral membranes, avicin channels are nonselective, but negatively-charged lipids confer cation selectivity (5:1, K(+):Cl(-)), indicating that phospholipids form part of the permeation pathway. Avicin channels in the mitochondrial outer membrane may favor apoptosis by altering the potential across this membrane and the intermembrane space pH.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge