中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 2000-Jan

Prokinetic effect of black tea on gastrointestinal motility.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
L Chaudhuri
S Basu
P Seth
T Chaudhuri
S E Besra
J R Vedasiromoni
D K Ganguly

关键词

抽象

The gastrokinetic effects of hot water extract of black tea [Camellia sinensis, (L) O. Kuntze (Theaceae)] on gastrointestinal motility were studied both in vivo and in vitro. The extract significantly accelerated the gastrointestinal transit (GIT) in vivo in mice. These facilitatory effect was reduced after pretreatment with atropine, hemicholinium-3, morphine, indomethacin, McN-A-343 and L-arginine. In guinea pig ileum, the extract facilitated the peristaltic reflex in response to pressures in normal preparation. The black tea extract and L-NMMA (nitric oxide synthase inhibitor) significantly reduced the electrical field stimulated nonadrenergic, noncholinergic (NANC) relaxation of isolated rat fundal strips. The extract markedly enhanced the tonic ('hump') responses to transmural stimulation in longitudinal muscle of guinea pig ileum which was unaltered in the presence of atropine. These findings suggest a cholinergic involvement and a partial role of prostaglandin and nitric oxide in the mechanism of action of black tea extract on gastrointestinal motility. To determine the effective constituents in black tea responsible for this activity, the effect of black tea polyphenols on GIT were also studied. Thearubigin fraction (but not theaflavin) accelerated GIT significantly which suggests its involvement in the prokinetic effect of black tea.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge