中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2005-Jan

Proteome-level investigation of Brassica carinata-derived resistance to Leptosphaeria maculans.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Babu Subramanian
Vipan K Bansal
Nat N V Kav

关键词

抽象

Plants resistant to the fungal pathogen Leptosphaeria maculans were generated by an interspecific cross between the highly susceptible Brassica napus (canola) and the highly resistant Brassica carinata. Changes in the leaf protein profiles of these lines were investigated in order to understand the biochemical basis for the observed resistance. Two-dimensional electrophoresis followed by tandem mass spectrometry led to the identification of proteins unique to the susceptible (5 proteins) and resistant genotypes (7 proteins) as well those that were differentially expressed in the resistant genotype 48 h after challenge with the pathogen (28 proteins). Proteins identified as being unique in the resistant plant material included superoxide dismutase, nitrate reductase, and carbonic anhydrase. Photosynthetic enzymes (fructose bisphosphate aldolase, triose phosphate isomerase, sedoheptulose bisphosphatase), dehydroascorbate reductase, peroxiredoxin, malate dehydrogenase, glutamine synthetase, N-glyceraldehyde-2-phosphotransferase, and peptidyl-prolyl cis-trans isomerase were observed to be elevated in the resistant genotype upon pathogen challenge. Increased levels of the antioxidant enzyme superoxide dismutase were further validated and supported by spectrophotometric and in-gel activity assays. Other proteins identified in this study such as nitrate reductase and peptidylprolyl isomerase have not been previously described in this plant-pathogen system, and their potential involvement in an incompatible interaction is discussed.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge