中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1989-Jun

Purification and Properties of 2-Carboxy-d-Arabinitol 1-Phosphatase.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
M E Salvucci
G P Holbrook

关键词

抽象

Carboxyarabinitol 1-phosphatase (2-carboxy-d-arabinitol 1-phosphate phosphohydrolase), a chloroplast enzyme that metabolizes the naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase, was isolated from tobacco (Nicotiana tabacum) leaves. The enzyme was purified more than 3500-fold using a protocol that included ammonium sulfate fractionation and gel filtration, ion-exchange, and hydrophobic interaction chromatography. Analysis of the final preparation by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the presence of a single polypeptide with a molecular mass of 53 kilodaltons. The enzyme exhibited an apparent K(m) (carboxyarabinitol 1-phosphate) of 33 micromolar and a pH optimum of 7.5. Enzyme activity did not require divalent cations and was unaffected by the metal chelators EDTA and cysteine. Carboxyarabinitol 1-phosphatase activity was inhibited by zinc, copper and molybdate and stimulated by sulfate. Chloroplast metabolites that affected activity included inorganic phosphate and ATP, which were inhibitory, and ribulose-1,5-bisphosphate, fructose-1,6-bisphosphate and NADPH which stimulated activity 2.5-fold. Activation of carboxyarabinitol 1-phosphatase activity by these positive effectors, together with the previously reported requirement for dithiothreitol, explain the light/dark modulation of carboxyarabinitol 1-phosphatase activity in vivo.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge