中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Natural Products 2012-Jul

Putative mycobacterial efflux inhibitors from the seeds of Aframomum melegueta.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Barbara Gröblacher
Veronika Maier
Olaf Kunert
Franz Bucar

关键词

抽象

In order to identify new putative efflux pump inhibitors that represent an appropriate target in antimycobacterial chemotherapy, nine paradol- and gingerol-related compounds (1-9) isolated from the seeds of Aframomum melegueta were assessed for their potential to inhibit ethidium bromide (EtBr) efflux in a Mycobacterium smegmatis model. Five of the compounds from A. melegueta and NMR spectroscopic data of the diketone 6-gingerdione (2) and its enolic tautomers, methyl-6-gingerol (5) and rac-6-dihydroparadol (7), are presented herein for the first time. After determination of their antimycobacterial activities and modulatory effects on the MIC of antibiotics as well as their synergistic effects in combination with antibiotics against M. smegmatis mc(2) 155, their impact on EtBr accumulation and efflux was evaluated using a microtiter plate-based fluorometric assay. The compounds exhibited moderate to weak antimycobacterial activities, and the best modulators induced a 4- to 16-fold decrease of the MICs of EtBr and rifampicin as well as a reduction of the MIC of isoniazid with fractional inhibitory concentration index values indicating synergistic activities in some cases. 6-Paradol (3), 8-gingerol (6), and rac-6-dihydroparadol (7) were the most potent EtBr efflux inhibitors in M. smegmatis mc(2) 155, displaying EtBr efflux inhibiting activities comparable to reference inhibitors.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge