中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Science 2018-Dec

RAD7 homologues contribute to Arabidopsis UV tolerance.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Triparna Lahari
Janelle Lazaro
Jeffrey M Marcus
Dana F Schroeder

关键词

抽象

Frequent exposure of plants to solar ultraviolet radiation (UV) results in damaged DNA. One mechanism of DNA repair is the light independent pathway Global Genomic Nucleotide Excision Repair (GG-NER), which repairs UV damaged DNA throughout the genome. In mammals, GG-NER DNA damage recognition is performed by the Damaged DNA Binding protein 1 and 2 (DDB1/2) complex which recruits the Xeroderma Pigmentosa group C (XPC) / RAD23D complex. In the yeast Saccharomyces cerevisiae, distinct proteins, Radiation sensitive 7 and 16 (Rad7p and Rad16p), recognize the damaged DNA strand and then recruit the XPC homologue, Rad4p, and Rad23p. The remainder of the proteins involved GG-NER are well conserved. DDB1, DDB2, XPC/RAD4, and RAD23 homologues have been described in the model plant Arabidopsis thaliana. In this study we characterize three Arabidopsis RAD7 homologues, RAD7a, RAD7b, and RAD7c. Loss of function alleles of each of the three RAD7 homologues result in increased UV sensitivity. In addition, RAD7b and RAD7c overexpression lines exhibited increased UV tolerance. Thus RAD7 homologues contribute to UV tolerance in plants as well as in yeast. This is the first time any system has been shown to utilize both the DDB1/2 and RAD7/16 damage recognition complexes.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge