中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of General and Applied Microbiology 2002-Apr

Rapid cell death in Xanthomonas campestris pv. glycines.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Satyendra Gautam
Arun Sharma

关键词

抽象

Xanthomonas campestris pv. glycines strain AM2 (XcgAM2), the etiological agent of bacterial pustule disease of soybean, exhibited post-exponential rapid cell death (RCD) in LB medium. X. campestris pv. malvacearum NCIM 2310 and X. campestris NCIM 2961 also displayed RCD, though less pronouncedly than XcgAM2. RCD was not observed in Pseudomonas syringae pv. glycines, or Escherichia coli DH5alpha. Incubation of the post-exponential LB-grown XcgAM2 cultures at 4 degrees C arrested the RCD. RCD was also inhibited by the addition of starch during the exponential phase of LB-growing XcgAM2. Protease negative mutants of XcgAM2 were found to be devoid of RCD behavior observed in the wild type XcgAM2. While undergoing RCD, the organism was found to transform to spherical membrane bodies. The presence of membrane bodies was confirmed by using a membrane specific fluorescent label, 1,6-diphenyl 1,3,5-hexatriene (DPH), and also by visualizing these structures under microscope. The membrane bodies of XcgAM2 were found to contain DNA, which was devoid of the indigenous plasmids of the organism. The membrane bodies were found to bind annexin V indicative of the externalization of membrane phosphatidyl serine. Nicking of DNA in XcgAM2 cultures undergoing RCD in LB medium was also detected using a TUNEL assay. The RCD in XcgAM2 appeared to have features similar to the programmed cell death in eukaryotes.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge