中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied and Environmental Microbiology 1997-Apr

Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
M Ilmén
A Saloheimo
M L Onnela
M E Penttilä

关键词

抽象

Basic features of regulation of expression of the genes encoding the cellulases of the filamentous fungus Trichoderma reesei QM9414, the genes cbh1 and cbh2 encoding cellobiohydrolases and the genes egl1, egl2 and egl5 encoding endoglucanases, were studied at the mRNA level. The cellulase genes were coordinately expressed under all conditions studied, with the steady-state mRNA levels of cbh1 being the highest. Solka floc cellulose and the disaccharide sophorose induced expression to almost the same level. Moderate expression was observed when cellobiose or lactose was used as the carbon source. It was found that glycerol and sorbitol do not promote expression but, unlike glucose, do not inhibit it either, because the addition of 1 to 2 mM sophorose to glycerol or sorbitol cultures provokes high cellulase expression levels. These carbon sources thus provide a useful means to study cellulase regulation without significantly affecting the growth of the fungus. RNA slot blot experiments showed that no expression could be observed on glucose-containing medium and that high glucose levels abolish the inducing effect of sophorose. The results clearly show that distinct and clear-cut mechanisms of induction and glucose repression regulate cellulase expression in an actively growing fungus. However, derepression of cellulase expression occurs without apparent addition of an inducer once glucose has been depleted from the medium. This expression seems not to arise simply from starvation, since the lack of carbon or nitrogen as such is not sufficient to trigger significant expression.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge