中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2011-Jul

Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Tomoaki Sakamoto
Ayami Kawabe
Asako Tokida-Segawa
Bun-Ichi Shimizu
Suguru Takatsuto
Yukihisa Shimada
Shozo Fujioka
Masaharu Mizutani

关键词

抽象

Catabolism of brassinosteroids regulates the endogenous level of bioactive brassinosteroids. In Arabidopsis thaliana, bioactive brassinosteroids such as castasterone (CS) and brassinolide (BL) are inactivated mainly by two cytochrome P450 monooxygenases, CYP734A1/BAS1 and CYP72C1/SOB7/CHI2/SHK1; CYP734A1/BAS1 inactivates CS and BL by means of C-26 hydroxylation. Here, we characterized CYP734A orthologs from Oryza sativa (rice). Overexpression of rice CYP734As in transgenic rice gave typical brassinosteroid-deficient phenotypes. These transformants were deficient in both the bioactive CS and its precursors downstream of the C-22 hydroxylation step. Consistent with this result, recombinant rice CYP734As utilized a range of C-22 hydroxylated brassinosteroid intermediates as substrates. In addition, rice CYP734As can catalyze hydroxylation and the second and third oxidations to produce aldehyde and carboxylate groups at C-26 in vitro. These results indicate that rice CYP734As are multifunctional, multisubstrate enzymes that control the endogenous bioactive brassinosteroid content both by direct inactivation of CS and by the suppression of CS biosynthesis by decreasing the levels of brassinosteroid precursors.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge