中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Investigative Dermatology 1984-Sep

Role of oxygen intermediates in UV-induced epidermal cell injury.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
K Danno
T Horio
M Takigawa
S Imamura

关键词

抽象

To investigate the role of oxygen intermediates (OIs) in sunburn cell (SC) formation and development of UV-inflammation in vivo, groups of mice were injected intravenously with OI scavengers, including bovine blood superoxide dismutase (SOD), bovine liver catalase, L-histidine, D-mannitol, and saline (controls) before and/or after UV irradiation with sunlamp tubes (mainly 280-320 nm; 300 mJ/cm2; UVR). Ear thickness was measured before and 6 and 24 h after UVR. Ears were removed 24 h after UVR and the number of SCs per unit length of ear epidermis was counted using hematoxylineosin stained sections. The number of SCs was significantly decreased (p less than 0.02) by a single injection of SOD (10-30 units/g body weight) given either just before or immediately after (less than 15 min) UVR, while SC formation was no longer suppressed by injections given more than 2 h before or after UVR. Four repeated injections of SOD (10 units/g) also reduced SC counts but did not significantly alter ear-swelling responses (ESR). Neither SC counts nor ESR were remarkably suppressed by 4 injections of any of the other active OI scavengers, inactivated SOD, or bovine serum albumin. A single injection of diethyldithiocarbamate, an SOD inactivator, significantly augmented SC formation (p less than 0.05), but did not change ESR. These findings suggest that OIs generated by UVR participate in SC formation but are not apparently involved in UV-edema.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge