中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physical Chemistry Letters 2019-Apr

Rotational Characterization of the Elusive gauche-Isoprene.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Jessica Porterfield
J Westerfield
Lincoln Satterthwaite
David Patterson
P Changala
Joshua Baraban
Michael McCarthy

关键词

抽象

Isoprene (2-methyl-1,3-butadiene) is highly abundant in the atmosphere, second only to methane in hydrocarbon emissions. In contrast to the most stable trans rotamer, structural characterization of gauche-isoprene has proven challenging: it is weakly polar, present at the level of only a few percent at room temperature, and structurally complex due to both torsional and methyl tunneling motions. gauche-Isoprene has been observed by two distinct but complementary experimental approaches: chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy coupled with cryogenic buffer gas cooling, and cavity-enhanced FTMW spectroscopy with a pulsed discharge source. Thermal enhancement of the gauche population (from 1.7% to 10.3%) was observed in the cryogenic buffer gas cell when the sample was preheated from 300 to 450 K, demonstrating that high-energy rotamers can be efficiently isolated under our experimental conditions. Rotational parameters for the inversion states (0+/0-) have been determined for the first time, aided by calculations at increasing levels of theoretical sophistication. From this combined analysis, the inversion splitting Δ E and the Fbc Coriolis coupling constant between the two inversion states have been derived.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge