中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Steroid Biochemistry and Molecular Biology 2015-Nov

Ruscogenin suppresses mouse neutrophil activation: Involvement of protein kinase A pathway.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Y N Lin
R Jia
Y H Liu
Y Gao
L L Wang
J P Kou
B Y Yu

关键词

抽象

Ruscogenin, a natural steroidal sapogenin, presents in both food and medicinal plants. It has been found to exert significant anti-inflammatory activities. Considering that activation of neutrophil is a key feature of inflammatory diseases, this study was performed to investigate the inhibitory effect of ruscogenin and its underlying mechanisms responsible for neutrophil activation. Ruscogenin displayed potent antioxidative effects against Formyl-Met-Leu-Phe (FMLP)-induced extra- and intracellular superoxide generation in mouse bone marrow neutrophils, with IC50 values of 1.07±0.32 μM and 1.77±0.46 μM, respectively. Phorbol myristate acetate (PMA)-elicited extra- and intracellular superoxide generation were also suppressed by ruscogenin, with IC50 values of 1.56±0.46 μM and 1.29±0.49 μM, respectively. However, ruscogenin showed weak inhibition in NaF-induced response. Inhibition of superoxide generation was mediated neither by a superoxide-scavenging ability nor by a cytotoxic effect. Furthermore, ruscogenin inhibited the membrane translocation of p47phox and p67phox. It reduced FMLP-induced phosphorylation of cytosolic phospholipase A2 (cPLA2) and p21-activated kinase (PAK). The cellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) expression were increased by ruscogenin. Moreover, ruscogenin inhibited phosphorylation of protein kinase B (Akt), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK). In addition, the inhibitory effects of ruscogenin on superoxide production and the phosphorylation of Akt, p38MAPK, and ERK1/2 were reversed by PKA inhibitor (H89), suggesting a PKA-dependent mechanism. In summary, our data suggest that ruscogenin inhibits activation of neutrophil through cPLA2, PAK, Akt, MAPKs, cAMP, and PKA signaling pathways. Increased PKA activity is associated with suppression of the phosphorylation of Akt, p38MAPK, and ERK1/2 pathways.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge