中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Carbohydrate Research 2006-Mar

Selective chemical depolymerization of rhamnogalacturonans.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Chenghua Deng
Malcolm A O'Neill
William S York

关键词

抽象

A method was developed to selectively methyl esterify and then cleave GalA residues in pectic polysaccharides. The method was optimized using a rhamnogalacturonan (RG) from Arabidopsis mucilage as a model compound. The carboxyl group of the GalA residues in the RG was selectively methyl esterified using tetrabutylammonium fluoride and iodomethane in Me(2)SO containing 8% water. A 1D HMQC NMR method to determine the degree of methyl esterification was developed using (13)C-iodomethane as the methylating agent. The methyl-esterified pectins were fragmented by beta-elimination in 0.2M sodium borate, pH7.3, at 125 degrees C. The resulting oligoglycosyl fragments, which contain a nonreducing 4-deoxy-beta-l-threo-hex-4-enepyranosyluronic acid residue, were characterized using MALDI-TOF mass spectrometry, monosaccharide composition analysis, and 1D and 2D (1)H and (13)C NMR spectroscopy. Application of this method to branched RG from potato generated low-molecular-weight fragments containing two residues from the RG backbone and a single side chain. In contrast, the fragments obtained when RG is treated with RG lyase contain a minimum of four backbone residues. The chemical method thus facilitates the release and structural characterization of the side-chain structures of RG obtained from various plant sources. The method also provides a convenient method for generating fully or partially methyl-esterified homogalacturonans.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge