中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Hyperthermia

Solid materials with high dielectric constants for hyperthermia applications.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
P Wust
H Fähling
J Berger
A Jordan
G Mönich
R Felix

关键词

抽象

The manufacture of solid components with high permittivities epsilon r of 1-100 and differing conductivities sigma of 0-1.0 S/m has practical significance for fabricating applicators and phantoms in radiofrequency hyperthermia. For this purpose, various plastics (resins, polyurethane and silicone) were combined with additives (graphite and metal powder) and tested to assess their radiofrequency and mechanical characteristics and to identify manufacturing problems. Most of the plastics could be made highly dielectric and conductive by adding graphite in the range of muscle tissue (i.e. epsilon r approximately 80, sigma approximately 0.8 S/m). However, there are major differences between the materials with respect to mechanical behaviour, durability, feasibility of manufacture, and reproducibility. Manufacturing water-equivalent plastics (low conductivity sigma < 0.05 S/m and epsilon r value of 70-80) is particularly difficult. A less filled polyester resin in which concentration of brass powder can achieve an epsilon r value of up to 100 at low conductivity proved to be the only suitable medium. Such a plastic can be used for future applicator designs. Other materials of interest include plastics equivalent to lossy media (e.g. sigma = 0.45-0.55 S/m, epsilon r = 70-80), fat-equivalent plastics (polyurethane with graphite) and higher dielectric flexible plastics (silicone with brass powder).

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge