中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Trees - Structure and Function

Specific leaf area of European Larch (Larix decidua Mill.).

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Helga Fellner
Gerald F Dirnberger
Hubert Sterba

关键词

抽象

CONCLUSIONS

The specific leaf area of European larch depends on branch height and canopy depth, indicating that both, the effect of hydraulic limitations and low water potentials in greater branch heights, and light availability affect specific leaf area.

UNASSIGNED

Specific leaf area (SLA) is defined as the ratio between projected leaf area and needle dry mass. It often serves as parameter in ecosystem modelling as well as indicator for potential growth rate. We explore the SLA of European larch (Larix decidua) and the most important factors which have an influence on it. Data were collected from eight stands in Styria, Austria. The stands varied in age, elevation and species mixture. Four stands were pure larch stands with only minor proportions of Norway spruce (Picea abies), whereas the other four were mixed stands of larch and spruce. In each stand 15 representative sample trees were felled. The crown of each sample tree was divided into three sections of equal length and in each section a random sample of needles was taken for determining projected leaf area and dry mass of 50 needles. The mean SLA of larch was established to be 117 cm2 g-1 with a standard deviation of ±27.9 cm2 g-1. SLA varies within the crown, but neither between different mixtures nor years of observation nor social position of the trees. A mixed-effects model, with the plots as random effect, revealed that SLA of larch decreased with increasing branch height (p = 0.0012) and increased with increasing canopy depth (p = 0.029). We conclude that both the hydraulic limitations due to low water potentials in greater branch heights and light availability affect specific leaf area.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge