中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemistry - A European Journal 2017-May

Structural Studies of Nicotinoids: Cotinine versus Nicotine.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Iciar Uriarte
Cristóbal Pérez
Elena Caballero-Mancebo
Francisco J Basterretxea
Alberto Lesarri
José A Fernández
Emilio J Cocinero

关键词

抽象

Nicotinoids are agonists of the acetylcholine receptor (nAChR) and play important biochemical and pharmacological roles. Herein, we report on the structure and conformation of cotinine, and compare its molecular properties with the nicotine prototype, from which it only differs in the addition of a carbonyl group. This investigation included a theoretical survey of the effects of rotamerization of the pyridine moiety, the puckering of the pyrrolidinone ring and the internal rotation of the methyl group. The experimental work examined the rotational spectrum of the molecule in a supersonic expansion, using both broadband chirped-pulse excitation techniques and cavity microwave spectrometers. Two conformers were observed for cotinine, and the fine and hyperfine structures arising from the two quadrupolar 14 N nuclei and the methyl internal rotor were fully analyzed. The two observed conformers share the same twisted conformation of the five-membered ring, but differ in a roughly 180° rotamerization around the C-C bond connecting the two rings. The energy barriers for the internal rotation of the methyl group in cotinine (4.55(4) and 4.64(3) kJ mol-1 , respectively) are much lower than in nicotine (estimated in 16.5 kJ mol-1 ). The combination of different intramolecular electronic effects, hydrogen bonding and possible binding differences to receptor molecules arising from the carbonyl group could explain the lower affinity of cotinine for nAChRs.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge