中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1990-Feb

Structure-activity relations of the cardiac gap junction channel.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
D C Spray
J M Burt

关键词

抽象

Cardiac gap junction channels play the important roles of synchronizing pacemaker cells and allowing impulse propagation along the conduction system and throughout the ventricular myocardium. These channels, which support current flow in both longitudinal and tranverse directions, are permeable to anions and cations with radii less than approximately 0.5 nm and in rat heart have unitary conductances on the order of 50 pS. This unitary conductance is consistent with channel geometry described by a right cylindrical pore with diameter large enough for the brilliantly fluorescent dye molecule lucifer yellow to pass between cells. These channels, like others in biological systems, are opened and closed by various treatments, a process termed gating. Cytoplasmic acidification reduces junctional conductance (gj), an effect that is apparently potentiated by elevated myoplasmic Ca ions. Reduced gj also occurs in response to a variety of lipophilic molecules, including halothane, heptanol, and unsaturated fatty acids; the mechanism of action may involve disruption of the protein-lipid microenvironment of the gap junction channel. Arachidonic acid uncouples, and this effect is partially, but incompletely, blocked by an inhibitor of the lipoxygenase metabolic pathways. Cyclooxygenase inhibitors have no protective effects. Certain cyclic nucleotides can rapidly increase gj [adenosine 3',5'-cyclic monophosphate (cAMP)] or slightly decrease it [guanosine 3',5'-cyclic monophosphate (cGMP)], and agents that use these cyclic nucleotides as second messengers (isoproterenol and perhaps carbachol, respectively) produce consistent effects. Agents expected to cause protein kinase C activation (tumor-promoting phorbol esters and diacylglycerol) increase gj rapidly. The gap junction protein from rat heart has been cloned and sequenced. From the primary sequence for the protein, plausible sites of action within the putative cytoplasmic domains are proposed for each of these treatments. In response to gating stimuli that close the channel (halothane, CO2, heptanol), unitary channel conductance is unchanged, suggesting that these agents act by reducing open time probability. Together, these properties constitute the beginnings of our endeavor to define pharmacological agents that are potentially useful in therapeutic manipulation of synchronous discharge, conduction velocity, and isochronous wavefront propagation in cardiac tissue.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge