中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Biochimica Polonica 2001

Structure-function relationship of serine protease-protein inhibitor interaction.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
J Otlewski
M Jaskólski
O Buczek
T Cierpicki
H Czapińska
D Krowarsch
A O Smalas
D Stachowiak
A Szpineta
M Dadlez

关键词

抽象

We report our progress in understanding the structure-function relationship of the interaction between protein inhibitors and several serine proteases. Recently, we have determined high resolution solution structures of two inhibitors Apis mellifera chymotrypsin inhibitor-1 (AMCI-I) and Linum usitatissimum trypsin inhibitor (LUTI) in the free state and an ultra high resolution X-ray structure of BPTI. All three inhibitors, despite totally different scaffolds, contain a solvent exposed loop of similar conformation which is highly complementary to the enzyme active site. Isothermal calo- rimetry data show that the interaction between wild type BPTI and chymotrypsin is entropy driven and that the enthalpy component opposes complex formation. Our research is focused on extensive mutagenesis of the four positions from the protease binding loop of BPTI: P1, P1', P3, and P4. We mutated these residues to different amino acids and the variants were characterized by determination of the association constants, stability parameters and crystal structures of protease-inhibitor complexes. Accommodation of the P1 residue in the S1 pocket of four proteases: chymotrypsin, trypsin, neutrophil elastase and cathepsin G was probed with 18 P1 variants. High resolution X-ray structures of ten complexes between bovine trypsin and P1 variants of BPTI have been determined and compared with the cognate P1 Lys side chain. Mutations of the wild type Ala16 (P1') to larger side chains always caused a drop of the association constant. According to the crystal structure of the Leu16 BPTI-trypsin complex, introduction of the larger residue at the P1' position leads to steric conflicts in the vicinity of the mutation. Finally, mutations at the P4 site allowed an improvement of the association with several serine proteases involved in blood clotting. Conversely, introduction of Ser, Val, and Phe in place of Gly12 (P4) had invariably a destabilizing effect on the complex with these proteases.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge