中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic and Medicinal Chemistry Letters 2017-06

Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Hyun Ah Jung
Pradeep Paudel
Su Hui Seong
Byung-Sun Min
Jae Sue Choi

关键词

抽象

Naturally occurring flavonoids co-exist as glycoside conjugates, which dominate aglycones in their content. To unveil the structure-activity relationship of a naturally occurring flavonoid, we investigated the effects of the glycosylation of naringenin on the inhibition of enzyme systems related to diabetes (protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase) and on glucose uptake in the insulin-resistant state. Among the tested naringenin derivatives, prunin, a single-glucose-containing flavanone glycoside, potently inhibited PTP1B with an IC50 value of 17.5±2.6µM. Naringenin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50: 5.4±0.30µM). In addition, prunin significantly enhanced glucose uptake in a dose-dependent manner in insulin-resistant HepG2 cells. Regarding the inhibition of α-glucosidase, naringenin exhibited more potent inhibitory activity (IC50: 10.6±0.49µM) than its glycosylated forms and the reference inhibitor, acarbose (IC50: 178.0±0.27µM). Among the glycosides, only prunin (IC50: 106.5±4.1µM) was more potent than the positive control. A molecular docking study revealed that prunin had lower binding energy and higher binding affinity than glycosides with higher numbers of H-bonds, suggesting that prunin is the best fit to the PTP1B active site cavity. Therefore, in addition to the number of H-bonds present, possible factors affecting the protein binding and PTP1B inhibition of flavanones include their fit to the active site, hydrogen-bonding affinity, Van der Waals interactions, H-bond distance, and H-bond stability. Furthermore, this study clearly depicted the association of the intensity of bioactivity with the arrangement and characterization of the sugar moiety on the flavonoid skeleton.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge