中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Review for Medical and Pharmacological Sciences 2018-Jan

Synthetic cathinones related fatalities: an update.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
S Zaami
R Giorgetti
S Pichini
F Pantano
E Marinelli
F P Busardò

关键词

抽象

OBJECTIVE

Synthetic cathinones, more commonly known as "bath salts", are synthetic drugs chemically related to cathinone, a psychostimulant found in the khat plant. They are the first most consumed products among new psychoactive substances, which cause psychostimulant and hallucinogenic effects determining a number of fatalities worldwide. In this paper, we have systematically reviewed cases of synthetic cathinones-related fatalities analytically confirmed, which have occurred in the last few years.

METHODS

Relevant scientific articles were identified in Medline, Cochrane Central, Scopus, Web of Science and Institutional/government websites up to November 2017 using the following keywords: synthetic cathinones, mephedrone, methylenedioxypyrovalerone, MDPV, methylone, ethylone, buthylone, fatal intoxication, fatalities and death.

RESULTS

In total, 20 citations met the criteria for inclusion, representing several fatal cases with analytically confirmed synthetic cathinones in biological sample/s of the deceased. The death was attributed to hyperthermia, hypertension, cardiac arrest and more in general to the classic serotonin syndrome. Only rarely did the concentration of the parent drug causing fatality overcome the value of 1 mg/L in post-mortem biological fluids.

CONCLUSIONS

Abuse of synthetic cathinones still represents a serious public health issue. Systematic clinical studies on both the animal and human model are lacking; therefore, the only available data are from the users who experience the possible hazardous consequences. Analytical methodologies for the identification of parent compounds and eventual metabolites both in ante-mortem and post-mortem cases need to be developed and validated. Analytical data should be shared through different communication platforms with the aim of stopping this serious health threat for drug users.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge