中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Gene Therapy 2009-Feb

Systemic therapeutic gene delivery for cancer: crafting Paris' arrow.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Alex W Tong
Chris M Jay
Neil Senzer
Phillip B Maples
John Nemunaitis

关键词

抽象

Tremendous strides have been made in proteogenomics and RNA interference technologies. Hence "personalized" cancer gene therapy has become a foreseeable rather than a predictable reality. Currently, the lack of an optimized, systemic gene delivery vehicle remains a key limiting factor for developing effective treatment applications. Since their introduction by Felgner in 1987, cationic lipids have been an attractive consideration for gene delivery, in view of their biocompatibility, biodegradability, low toxicity, and low immunogenicity. Successful in vivo transgene expression by cationic lipid- or cationic polymer-based delivery depends critically on a long circulating half life (>48 h), a definable systemic biodistribution with target-specific cancer localization, and efficient cell entry and internalization. Ideally, the agent should have a hydrophobic, stabilized core that ensures integrity of the therapeutic entity in vivo, a biocompatible, neutrally charged shell (zeta potential of approximately +/-10 mv) for enhanced, "stealth" circulation, and a suitable size (approximately 50-200 nm in diameter) for access into the tumor neovasculature and reduced reticuloendothelial system (RES) uptake. "Smart" receptor-targeting moieties can redirect intracellular trafficking. Additional engineered features have also been incorporated to minimize lysosomal degradation (membrane fusogenic lipids or proton sponge), promote endosomal escape into cytoplasm (cell penetrating peptides, triblock copolymer construction), and enhance nuclear entry and activate the endogenous transcriptional machinery (inclusion of a nuclear localization signal). Improvements in each of these respective areas of study have converged to yield promising in vivo results.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge