中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Cancer 2011-Sep

TP53 Mutational signature for aristolochic acid: an environmental carcinogen.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Masaaki Moriya
Neda Slade
Branko Brdar
Zvonimir Medverec
Karla Tomic
Bojan Jelaković
Lin Wu
Sim Truong
Andrea Fernandes
Arthur P Grollman

关键词

抽象

This study was designed to establish the TP53 mutational spectrum of aristolochic acid (AA), examined in the context of endemic (Balkan) nephropathy, an environmental disease associated with transitional cell (urothelial) carcinomas of the upper urinary tract (UUC). Tumor tissue was obtained from residents of regions in Bosnia, Croatia and Serbia where endemic nephropathy has been prevalent for over 50 years. Fifty-nine TP53 mutations were detected in 42 of the 97 tumors analyzed. Mutational spectra were dominated by A:T to T:A transversions with the mutated adenines located almost exclusively on the nontranscribed strand. This marked strand bias is attributed to selective processing of aristolactam-dA adducts by transcription-coupled nucleotide excision repair. Hotspots for A:T to T:A mutations include codons 131 and 179 and the 5'-AG acceptor splice site of intron 6. The unique TP53 mutational signature for AA identified in this study can be used to explore the hypothesis that botanical products containing this human carcinogen and nephrotoxin are responsible, in part, for the high prevalence of UUC and chronic renal disease in countries where Aristolochia herbal remedies traditionally have been used for medicinal purposes.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge