中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2007-Mar

Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Siriporn Chattipakorn
Anucha Pongpanparadorn
Wasana Pratchayasakul
Anchalee Pongchaidacha
Kornkanok Ingkaninan
Nipon Chattipakorn

关键词

抽象

The current pharmacotherapy for Alzheimer's disease (AD) is the use of acetylcholinesterase inhibitors (AChE-Is). A previous in vitro study showed that Tabernaemontana divaricata extract (TDE) can inhibit AChE activity. However, neither the AChE inhibitory effects nor the effect on neuronal activity of TDE has been investigated in vivo. To determine those effects of TDE in animal models, the Ellman's colorimetric method was implemented to investigate the cortical and circulating cholinesterase (ChE) activity, and Fos expression was used to determine the neuronal activity in the cerebral cortex, following acute administration of TDE with various doses (250, 500 and 1000 mg/kg) and at different time points. All doses of TDE 2 h after a single administration significantly inhibited cortical AChE activity and enhanced neuronal activity in the cerebral cortex. The enhancement of Fos expression and AChE inhibitory effects in the cerebral cortex among the three TDE-treated groups was not significantly different. A 2 h interval following all doses of TDE administration had no effect on circulating ChE activity. However, TDE significantly inhibited circulating AChE 10, 30 and 60 min after administration. Our findings suggest that TDE is a reversible AChE-I and could be beneficial as a novel therapeutic agent for AD.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge