中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cardiovascular Research 1994-Mar

Temperature modulates calcium homeostasis and ventricular arrhythmias in myocardial preparations.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
G Gambassi
E Cerbai
M Pahor
M C Capogrossi
P Carbonin
A Mugelli

关键词

抽象

OBJECTIVE

The aim was to evaluate the effect of temperature on reoxygenation induced ventricular arrhythmias in isolated hearts, on delayed afterdepolarisations and Iti current in Purkinje fibres, and on sarcoplasmic reticular function and Ca2+ handling of single cardiac myocytes.

METHODS

Isolated guinea pig hearts were retrogradely perfused at 37 degrees C with a hypoxic medium for 15 min and reoxygenated for 10 min either at 33 degrees C or at 37 degrees C. Intracellular microelectrodes were used to assess the presence of delayed afterdepolarisations and triggered activity in sheep Purkinje fibres exposed to strophanthidin at different temperatures. Iti current was evaluated in voltage clamp experiments. In rat cardiomyocytes, loaded with the fluorescent Ca2+ dye, indo-1, the sarcoplasmic reticular Ca2+ content was assessed at 30 degrees C and at 37 degrees C, either by a caffeine spritz puffed onto a cell from a patch pipette or by a post-rest contraction.

RESULTS

Hypothermic reoxygenation reduced the incidence of ventricular arrhythmias in isolated hearts (30%, n = 10, at 33 degrees C and 75%, n = 30, at 37 degrees C, p < 0.05). In Purkinje fibres, hypothermia decreased the amplitude of delayed afterdepolarisations. Moreover, at 32 degrees C, the amplitude of Iti current was decreased to 59.2(SEM 2.6)% of the normothermic value [27.5(6.7) nA, n = 4, p < 0.005] and time to peak increased to 159.7(10.2)% [value at 37 degrees C = 470(41) ms, n = 4, p < 0.01]. In cardiac cells, sarcoplasmic reticular Ca2+ release induced by caffeine spritz or by post-rest contraction was increased at 30 degrees C. However, following a pacing period at 1 Hz, hypothermia prolonged the time to onset of the first spontaneous Ca2+ oscillation [59(14) s at 30 degrees C and 27(9) s at 37 degrees C, n = 5, p < 0.05] and reduced the oscillation frequency [1.1(0.4) min-1 at 30 degrees C and 3.1(0.9) min-1 at 37 degrees C, n = 5, p < 0.05].

CONCLUSIONS

Mild hypothermia increases sarcoplasmic reticular Ca2+ content but decreases the likelihood of spontaneous Ca2+ release. This may explain the reduction of delayed afterdepolarisations and Iti current amplitude in Purkinje fibres and it could represent a mechanism for the protection provided by hypothermia against ventricular arrhythmias.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge