中文(简体)
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Human Reproduction Update

Teratozoospermia: spotlight on the main genetic actors in the human.

只有注册用户可以翻译文章
登陆注册
链接已保存到剪贴板
Charles Coutton
Jessica Escoffier
Guillaume Martinez
Christophe Arnoult
Pierre F Ray

关键词

抽象

BACKGROUND

Male infertility affects >20 million men worldwide and represents a major health concern. Although multifactorial, male infertility has a strong genetic basis which has so far not been extensively studied. Recent studies of consanguineous families and of small cohorts of phenotypically homogeneous patients have however allowed the identification of a number of autosomal recessive causes of teratozoospermia. Homozygous mutations of aurora kinase C (AURKC) were first described to be responsible for most cases of macrozoospermia. Other genes defects have later been identified in spermatogenesis associated 16 (SPATA16) and dpy-19-like 2 (DPY19L2) in patients with globozoospermia and more recently in dynein, axonemal, heavy chain 1 (DNAH1) in a heterogeneous group of patients presenting with flagellar abnormalities previously described as dysplasia of the fibrous sheath or short/stump tail syndromes, which we propose to call multiple morphological abnormalities of the flagella (MMAF).

METHODS

A comprehensive review of the scientific literature available in PubMed/Medline was conducted for studies on human genetics, experimental models and physiopathology related to teratozoospermia in particular globozoospermia, large headed spermatozoa and flagellar abnormalities. The search included all articles with an English abstract available online before September 2014.

RESULTS

Molecular studies of numerous unrelated patients with globozoospermia and large-headed spermatozoa confirmed that mutations in DPY19L2 and AURKC are mainly responsible for their respective pathological phenotype. In globozoospermia, the deletion of the totality of the DPY19L2 gene represents ∼ 81% of the pathological alleles but point mutations affecting the protein function have also been described. In macrozoospermia only two recurrent mutations were identified in AURKC, accounting for almost all the pathological alleles, raising the possibility of a putative positive selection of heterozygous individuals. The recent identification of DNAH1 mutations in a proportion of patients with MMAF is promising but emphasizes that this phenotype is genetically heterogeneous. Moreover, the identification of mutations in a dynein strengthens the emerging point of view that MMAF may be a phenotypic variation of the classical forms of primary ciliary dyskinesia. Based on data from human and animal models, the MMAF phenotype seems to be favored by defects directly or indirectly affecting the central pair of axonemal microtubules of the sperm flagella.

CONCLUSIONS

The studies described here provide valuable information regarding the genetic and molecular defects causing infertility, to improve our understanding of the physiopathology of teratozoospermia while giving a detailed characterization of specific features of spermatogenesis. Furthermore, these findings have a significant influence on the diagnostic strategy for teratozoospermic patients allowing the clinician to provide the patient with informed genetic counseling, to adopt the best course of treatment and to develop personalized medicine directly targeting the defective gene products.

加入我们的脸书专页

科学支持的最完整的草药数据库

  • 支持55种语言
  • 科学支持的草药疗法
  • 通过图像识别草药
  • 交互式GPS地图-在位置标记草药(即将推出)
  • 阅读与您的搜索相关的科学出版物
  • 通过药效搜索药草
  • 组织您的兴趣并及时了解新闻研究,临床试验和专利

输入症状或疾病,并阅读可能有用的草药,输入草药并查看所使用的疾病和症状。
*所有信息均基于已发表的科学研究

Google Play badgeApp Store badge